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Solution 7: Constant drawdown in 
a well in a leaky aquifer 

Assumptions: 
1. Water level in well is changed instan- 

taneously by s, at t=O. 
2. Well is of finite diameter and fully pen- 

etrates the aquifer. 
3. Aquifer is overlain, or underlain, 

everywhere by a confining bed hav- 
ing uniform hydraulic conductivity 
(K’) and thickness (b’). 

4. Confining bed is overlain, or underlain, 
by an infinite constant-head plane 
source. 

5. Hydraulic gradient across confining bed 
changes instantaneously with a 
change in head in the aquifer (no re- 
lease of water from storage in the 
confining bed). 

6. Flow in the aquifer is two dimensional 
and radial in the horizontal plane 
and flow in the confining bed is verti- 
cal. This assumption is approximated 
closely where the hydraulic conduc- 
tivity of the aquifer is sufficiently 
greater than that of the confining 
bed. 

Differential equation: 

a2slar2 + (1lrMslar - SK’lTb’ = WT)aslat 

This differential equation describes nonsteady 
radial flow in a homogeneous isotropic confined 
aquifer with leakage proportional to draw- 
down. 

Boundary and initial conditions: 

s(r,O)=O, r30 
s(r,,.,t)=s,,, tZ0 
s(q)=O, tso 

(1) 
(2) 
(3) 

Equation 1 states that, initially, drawdown 
is zero. Equation 2 states that at the wall or 
screen of the discharging well, drawdown in 
the aquifer is equal to the constant drawdown 
in the well, which assumes that there is no en- 
trance loss to the discharging well. Equation 3 
states that the drawdown approaches zero as 
distance from the discharging well approaches 
infinity. 

Solutions (Hantush, .1959): 
I. For the discharge rate of the well, 

where 
Q = 2~Ts,cG(w,cIB), 

G(a,r,,/B) = (r,,/B)K,(r,,lB)lK,(r,,lB) 

+(4/$) exp [ -a(rJB)2] 

/ 

- [uexp(--au’)i[$ (U) + Y,’ (U) ]I 
0 

. duI[u’ + (r,c~B)PIP 

and a = TtlSr,f , 

B=m. 

K, and K, are zero-order and first-order, re- 
spectively, modified Bessel functions of the sec- 
ond kind. JO and YO are the zero-order Bessel 
functions of the first and second kind, re- 
spectively. 

II. For the drawdown in water level 

s = s,,.(K,,(r/B )/K,,(r,,./B) 

J 
X 

+(2/n)exp(-ar,,‘lU”) exp (-au’) 
o u’ + (r,,./B)’ 

with cy, B, K,,, Jo, and YO as defined previously. 
Comments: 

A cross section through the discharging well 
is shown in figure 7.1. The boundary conditions 
most commonly apply to a flowing artesian 
well, as is shown in this illustration. 

Figure 7.2 on plat,e 1 is a plot of dimension- 
less discharge (G(c-u,r,,lB)) versus dimension- 
less time ((~1 from data of Hantush (1959, table 
1) and Dudley (1970, table 2). Selected values 
of G(cu,r,,.lB) are given in table 7.1. The corre- 
sponding data curve should be a plot of ob- 
served discharge versus time. The data curve is 
matched to figure 7.2 and from match points 
(cx,G(Cy,r,,.lB)) and (t,Q), T and S are computed 
from the equations 
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FIGURE 7.1.-Cross section through a well with constant drawdown in a leaky aquifer. 

T = &/(2~s,,.G(a,r,,lB)l 

and S = Ttl(c&). 

Figure 7.3 on plate 1 contains plots of dimen- 
sionless drawdown (s/s,~) versus dimensionless 
time (W 9/r*) !, . The corresponding data plot 

would be observed drawdown versus observa- 
tion time. Matching the data and type curves 
by superposition and choosing convenient 
match points (sIs,,,cu-,:IP) and (s,t), the ratio of 
transmissivity to storage coefficient can be 
computed from the relation 

T/S = (ar~lr*)(r”lt). 

Figure 7.3 was plotted from function values 
generated by a FORTRAN program. This pro- 
gram is listed in table 7.2. The input data for 
this program consist of three cards coded in 
specific formats. Readers unfamiliar with 

FORTRAN format items should consult a 
FORTRAN language manual. The first card 
contains: the smallest value of alpha for which 
computation is desired, coded in format E10.5 
in columns l-10; the largest value of alpha for 
which computation is desired, coded in format 
E10.5 in columns 11-20. The output table will 
include a range in alpha spanning these two 
values up to a limiting range of nine log cycles. 
The second card contains 13 values of r,,.lB. 
These coded values are the significant figures 
only and should be greater or equal to 1 and 
less than 10. The power of 10 by which each of 
these coded values is multiplied is calculated 
by the program. Zero (or blank) coding is per- 
missible, but the first zero (or blank) value will 
terminate the list. The 13 values, all coded in 
format F5.0, are coded in columns 1-5, 6-10, 
11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 
41-45, 46-50, 51-55, 56-60, and 61-65. The 
third card contains the radius of the control 
well and distances to the observation wells. 
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OL 

TABLE 7.1.-Values of G(a,r,IB) 

[Values for rJB =z lx lo-’ and a P 1x10’ are from Hantush (1959, table 11, others are from Dudley (1970, table Z,] 

rlom 

0 6 x 10-Z 1x10-’ 2x10-~ 6x 1O-2 1 x10-1 2x 10-1 6x10-’ 1x100 

1 x10-1 2.24 2.24 2.24 2.25 2.25 2.25 2.26 
^ ^_ 
z.31 2.43 

: 1.71 1.23 1.71 1.23 1.71 1.23 1.71 1.23 1.72 1.23 1.72 1.24 1.73 1.25 1.81 1.38 
1.96 
1.61 

1 x 100 ,983 983 -983 .984 .986 ,990 1.01 1.18 1.49 .--- ._-- _~ 

2 .800 ,628 .800 ,628 ,800 .628 .801 .629 .804 ,633 .809 .642 ,834 ,682 1.07 1.01 1.44 1.43 
1 x 10’ ,534 ,534 ,534 ,535 .! 541 .554 ,611 
2 .461 ,461 .461 .462 ,472 .491 .569 
5 -389 -389 .389 ,390 .407 .438 ,548 
i x 10’ 1346 .346 .346 ,349 ,374 ,417 ,545 

: .274 ,311 .311 .275 .312 .276 .316 ,284 .353 .341 .408 .406 
1 x lo3 .251 .252 .255 .266 .339 
2 .232 .234 ,239 .255 
iI .210 ,215 .222 .249 
1 x 104 ,196 ,204 .216 .248 

i ,185 .170 ,197 ,192 .213 ,212 
1 x 105 ,161 .191 

!i .152 ,143 
1 x lo6 .136 

; .130 ,123 ,191 ,212 3248 ,339 .406 ,545 1.01 1.43 

r=JB 
a 0 1x10-3 2x 10-s 6xWs 1 x lo-’ 2x 10-a 6x10-’ 1x10-3 2x 10-S 

1x104 
2 
5 
i x105 

f 
1 X106 

; 
1 X10' 

0.196 
,185 
.170 
,161 
,152 
.143 
,136 
,130 
.123 
.118 

0.196 0.196 
.185 .185 
.170 ,170 
.161 .I61 
,152 .152 
.143 .143 
,136 .136 
,130 ,130 
.123 ,123 
,118 .118 

0.196 
.185 
.170 
.161 
,152 
.143 
,136 
.130 
.123 
.118 

0.196 0.196 0.196 0.196 0.197 
.185 .185 .185 .185 ,185 
,170 .170 ,170 .170 .I73 
,161 ,161 .162 ,162 ,167 
.152 .152 ,153 .155 ,163 
.143 .143 ,144 ,148 ,161 
,136 ,137 .139 ,144 ,159 
,130 .131 .135 .143 .159 
,123 ,124 ,133 ,142 .158 
.118 .120 

E .114 ,108 .114 .114 .108 .114 .108 .114 .116 

1 XIOR ,104 :::: .104 .105 ::A: 
: ,100 .0958 ,100 .0958 .lOl .0966 ::i; .107 

1 x 109 .0927 .0930 .0943 

f .0899 .0864 .0906 .0880 .0927 .0916 
i x 10’0 .0838 .0867 .0914 
2 .0814 .0862 
5 .0785 .0860 
1 x 10” .0764 .0860 .0914 .102 .107 ,116 ,133 ,142 ,158 
2 
5 

The control well radius (r,,.) is coded first, in 
columns 1-8 in format F8.2. The distances b-1 
to the observation wells (maximum of nine) are 
coded next, in monotonic increasing order 
(smallest r first, largest r last), in columns 
9-16, 17-24, 25-32, 33-40, 41-48, 49-56, 
57-64, 65-72, and 73-80, all in format F8.2. If 
two or more observation wells have the same 
distance, this common distance should be coded 
only once, the function values will apply to all 
wells at the same distance from the control 

well. If the number of observation wells is less 
than nine, the remaining columns on the card 
should be left blank. 

The integral in equation 4 is approximated 
by 

I 

x 
f(u,a,r,,/B) dn :L 

0 
8000 

I: f(-Art/2 + iAu,a,r,,lBJ Au . 
i=l 
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This expression is a composite quadrature with 
equally spaced abscissas. The abscissas are 
chosen at the midpoints of the intervals instead 
of the ends because the integrand is singular at 
u =O. The value of Au used is related to OL and is 
Au < lo-:j/&-. Th e r,,.lB values then selected 
by the program satisfy r,,.lB 2 10 Au. These two 
constraints, though empirical, are related to 
the behavior of the integrand; the first con- 
straint is related to the term e -au’as u becomes 
large, and the second to uI(u’ +(r,,./B)2) as u 
becomes small. 

The Bessel functions K,,(r/B ), K,,(r,,./B ) are 
evaluated by the IBM subroutine BESK. A de- 
scription of this subroutine may be found in the 
IBM Scientific Subroutine Package. 

The Bessel functions of the second kind in 
the integrand, Y,,(U) and Y,,(ur/r,,.), are evalu- 
ated using IBM subroutine BESY, which is 
discussed in IBM SSP manual. The Bessel 
functions J,,(u) and J,,(ur/r,,.) are evaluated for 
arguments less than four by a polynomial ap- 
proximation consisting of the first 10 terms of 
the series expansion 

J,,(x) = 2 (-1)” (x%?)“/(n!)“. u=O 

For arguments greater than or equal to four, 
the asymptotic expansion is used 

J,,(X) = P cos (x - 7i/4) + Q sin (X - n/4). 

P and Q are calculated by the algorithm used 
in IBM subroutine BESY. 

The output from this program consists of ta- 
bles of function values an example of which is 
shown in figure 7.4. 

Solution 8: Constant discharge 
from a fully penetrating well of 

finite diameter in a nonleaky 
aquifer 

Assumptions: 
1. Well discharges at a constant rate, Q. 
2. Well is of finite diameter and fully pen- 

etrates the aquifer. 
3. Aquifer is not leaky. 
4. Discharge from the well is derived from 

a depletion of storage in the aquifer 
and inside the well bore. 

Differential equation: 

%slW + (llr)War = (SIT)%/&, r‘3r,, 

This differential equation describes 
nonsteady radial flow in a homogeneous iso- 
tropic aquifer in the region outside the pumped 
well. 

Boundary and initial conditions: 
s(r,(., t) = SIC(t), t>O (1) 

S(X,t)=O, I?>0 (2) 
s(r, 0) = 0, rzr,, (3) 

s,,.(O) = 0 (4) 
(2~ro.T)as(r,,., t)lar-(.rrr~~)as,,.(t)lat 

= -Q,t>O (5) 

Equation 1 states that the drawdown at the 
well bore is equal to the drawdown inside the 
well, assuming that there is no entrance loss at 
the well face. Equation 2 states that drawdown 
is small at a large distance from the pumping 
well. Equations 3 and 4 state that, initially, 
drawdown in the aquifer and inside the well is 
zero. Equation 5 states that the discharge of 
the well is equal to the sum of the flow into the 
well and the rate of decrease in storage inside 
the well. 

Solution (Papadopulos and Cooper, 1967; 
Papadopulos, 19671: 

s = (&/4nT) F(u,a,p), 

where 

I 

x 
F(u,cu,p) = (8ah) 

0 

[(1-exp(-P”p’/4u)] [J,,(gp)A(B)-Y,,(pp)g(~)]d~ 
;[A(P)]’ + [B@)]“#‘, 

and 

B(P) = pJ,,(p)-2cuJ,(p), 
A(P) =/3Yo(P)-2aY,(/3), 

u = r’S/4Tt, 
a = r$Slr$, 

and p = r/r,,. . 

J,, and Y,,, J, and Y, , are zero-order and 
first-order Bessel functions of the first and sec- 
ond kind, respectively. 
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The drawdown inside the pumped well is ob- 
tained at r = r,c and can be expressed as 
(Papadopulos and Cooper, 1967, p. 242): 

SIC = (&/4nT) F(u,, ,a), 

where F(U,“,cx) = F(u,cr,l), 

and u,, = r,$‘l4tT. 

Comments: A cross section through the dis- 
charging well is shown in figure 8.1. The 
geometry, except for the region of the well bore, 
is the same as for solution 1 (Theis solution). It 
is apparent from figure 8.2 and 8.3 (on plate 1) 
that F(u ,a,~) approaches W(U), the 
Theis solution, as time becomes large. 

1 

Static level 

Papadopulos (1967, p. 161) stated that for 
t >2.5x lO”r,lT, or apYu> lo“, the function 
F(u,a,p) can be closely approximated by 
F(u,a,p) =W(U). Papadopulos and Cooper 
(1967, p. 242) stated that for t>2.5~ 10’ r,YT, 
or fflu,, > lo”, the function F(u,,,aY) can be 
closely approximated by F(u,, ,a) = W(u,,). An 
examination of the type curves and function 
values indicates that F(u,,,a)=W(u,,) (less 
than 5-percent error) for Q/U,, > lo’, and hence t 
should only be greater than 25 r,YT for draw- 
down in the pumped well. 

Figures 8.2 and 8.3 were prepared from func- 
tion values given in Papadopulos and Cooper 
(1967) and Papadopulos (1967), which are re- 
produced in table 8.1. For drawdown observa- 
tions in the pumped well, the method of 
analysis is to plot drawdown versus time and 

3 

f 

I( r- 
I 

Aquifer 

Impermeable bed 

FIGURE 8.1.-Cross section through a discharging well of finite diameter. 
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0 

1 rw2s 
u,=4Tt 

FKXJRE 8.2.-Five selected type curves ofF&.,a), and the Theis solution, versus l/u,. 

then superimpose the plot on figure 8.2. After 
match points of (s,t) and (F(u,,a), l/u,) are 
chosen, the transmissivity can be computed 
from the relation T=(Q/47rs) F(u,,c~). Then, 
the storage coefficient can be determined from 
S=(4Tt/r~)l(llu,). 

F&observations not in the pumped well, two 
procedures are available for analyzing the 
data. To analyze the data from a single obser- 
vation well, a family of type curves of F(u,a,p) 
versus l/u for different values of (Y can be plot- 
ted for the p value appropriate for the observa- 
tion well, using values in table 8.1. This proce- 
dure produces a family of type curves similar to 
that shown for p = 1 in figure 8.2. If p for the 
observation well is between p values in table 
8.1, function values can be interpolated. Using 
this approach, the data for the observation well 
are plotted as drawdown versus time and 
matched to the best-fitting member of the plot- 
ted type curves. Transmissivity and storage 
coefficient can be calculated from T = (Q/433-s) 
F(u,a,p) and S =(4Tt/r2)l(llu). 

Drawdowns at more than one observation 
point may be combined by preparing a compos- 
ite plot of the drawdowns at each observation 

well versus t/P. This composite plot would be 
analyzed by matching it to a family of type e 

curves ofF(u,a,p) versus l/u for constant CL An 
example of such a type-curve family for a! = lo-” 
is shown in figure 8.3. This method requires 
multiple sheets of t.ype curves, one sheet for 
each value of CL When the data curves are 
matched to the type-curve family, care should 
be taken to insure that the data for each well 
fall on the type curve having the appropriate p 
value. This will be possible for all the data for 
only one value of CL Transmissivity and storage 
coefficient are calculated from T = (&/47rs) 
F(u,a,p) and S =4T(W)l(llu). 

In both of these methods of plotting and com- 
paring data, an alte:rnate computation of stor- 
age coefficient is S =r:alr~. However, as 
pointed out by Papadopulos and Cooper (1967, 
p. 244), the shapes of type curves differ only 
slightly when (Y changes by an order of mag- 
nitude, therefore the determination of S is sen- 
sitive to choosing the “correct” curve. 
Papadopulos and Cooper (1967, p. 244) suggest 
that if S can be estimated within an order of 
magnitude, the valu’e of a! to be used for match- 
ing the data can be decided. 
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xxx x 

P7Pi 
0000 % 
l-l,+l+rl l-l 
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The early parts (short time) of the curves in 
figure 8.2 are straight lines. According to 
Papadopulos and Cooper (1967, p. 244), these 
represent conditions under which all the water 
pumped is derived from storage within the 
well. The straight lines approached by the 
curves satisfy the equations 

F(u,,a) = (Y/U, 

and 

s, = &t/m: = 
volume of water discharged 

area of well 

Therefore, as pointed out by Papadopulos and 
Cooper (1067, p. 244), data that fall on this 
straight part of the type curves do not indicate 
information about the aquifer characteristics. 

Table 8.2 is a listing of two FORTRAN pro- 
grams by S. S. Papadopulos that evaluate 

FflJWvALPtiA) FOR AL .PHA= l.OOOOOE- 

uw INTEGRAL 

Z.OOOOOE 00 1.54210E 03 
1.00000E 00 3.08412E 03 
5.00000E-01 6.16789E 03 
2.00000E-01 1.54184E 04 
1.00000E-01 3.083316 04 
5.00000E-02 6.16529E 04 
2.00flooE-n2 1.54061E 05 

l.OOOOOE-02 3.07919E 05 
5.00000E-03 6.15138E 05 
2.00000E-03 1.53334E 06 
l.OOOOOE-03 3.05367E 06 
5.00000E-04 6.06085E 06 
2.00000E-04 1.48475E 07 

.04 

INTEGRAL ERROR 

-6.98844E-02 
-1;39817E-01 
-2.747756-01 
-i.97533E-01 
-1.39715E 00 
-2.71364E 00 
-6.97112E 00 
-1.39383E 01 
-2.78767E 01 
-6.82757E 01 
-1.38658E 02 
-2.76458E 02 
-6.79220E 02 

l.OOOOOE-04 2.88072E 07 -1.3078OE 03 
5.00000E-05 5.45352E 07 -2.50960E 03 
2.00000E-05 1.18065E 08 -5.40026E 03 

F(u,,cr) and F(u,a,p). The input data to both 
programs consists of cards coded in specified 
format (readers unfamiliar with FORTRAN 
language format should refer to a FORTRAN 
language manual). Input to the programs is 
one or more groups of data, each group of data 
consisting of two cards. The first card contains 
one value of alpha in columns l-10, coded in 
format E10.5. The program to evaluate 
F(u,a,p) also requires a value of rho on this 
card in columns 11-20. This value of rho, 
which must be greater than one, is also coded 
in format E10.5. The second card contains 16 
values of u coded in columns 1-5, 6-10, . . . , 
75-80 in format 16F5.0. The F(u,,a) or 
F(u,a,p) values will be printed in the order 
that the u values are coded. If less than 16 val- 
ues of u are desired, the remaining columns on 
the card may be left blank. Outputs from these 
two programs are shown in figures 8.4 and 8.5. 

F(UW,ALPHA) X(PEAK) YCPEAK) 

4.99991E-OS 
9.99956E-05 
1.9998OE-04 
4.99907E-04 
9.99695E-04 
1.99896E-03 
4.99507E-03 
9.98359E-03 
1.99445E-02 
4.97152E-02 
9.90083E-Ot 
1.96509E-01 
4.81397E-01 
9.3400BE-01 
1.7681BE 00 
3.828OOF 00 

5.9656lE-03 
C~.965hlE-03 
5.96561E-03 
5,96561E-03 
5.96560E-03 
5.96559E-03 
5.96559E-03 
5.965;4E-03 
!;.96549E-03 
5.96527E-03 
!<.96493E-03 
5.96425E-03 
5.96223E-03 
5,95886E-03 
5.952376-03 
5.93415E-03 

5.55886E 05 
1.11177E 06 
2.22353F 06 
5.55875E 06 
1.11173E 07 
2.22335E 07 
5.55764E 07 
1.11128E OH 
2.22157E 08 
5.54652E 08 
1.10684E 09 
2.20389E 1l9 
5.43712E 09 
1.06380E 10 
2.03734E 10 
4.49196E 10 

FIGURE 8.4.-Example of output from program for drawdown inside a well of finite diameter due to constant discharge. 

F(UIALPHA,RHO) FOR ALPHA= l.OOOOOE-OSr RHO= 2.00000E 00 

U INTEGRAL INTEGRAL ERROR F(U*ALPHA.RHO) 

9.99999900E-04 6.2927360OE 02 5.45096700E-01 3.20486300E-02 
5.00000000E-04 1.2R359500E 03 1.11649700E 00 6.5372R80OE-02 
1.99999900E-04 3.26376700~ 03 2.47402200E 00 l.h6222200E-01 
1.00000000E-04 6.55423000~ 03 3.31468400E 00 3.33803700E-01 
5.00000000E-05 1.300158OOE 04 3.53750700E 00 6.62164900E-01 
2.OOOOOOOOE-05 3.11692500E 04 3.54940500E 00 1.58743SOOE 00 
9.99999900E-06 5.79505700E 04 3.546022OOE On 2.95139600E 00 
4.999999ooE-06 1.01023500E 05 3.53222000E 00 5.1450830OE 00 
1.99999900E-06 1.78237100E 05 3.62140400E 00 9.07753300E 00 
1.00000000E-06 2.30897600E 05 3.66347000E 00 1.17S95100E 01 
4.99999900E-07 2.63222100E 05 3.hP847000E on 1.34057HOOF 01 
1.99999900E-07 2.8R201ROOE 05 3.521A0300E on 1.4677990nF 01 

FIGURE 8.5.-Example of output from program for drawdown outside a well of finite diameter due to constant discharge. ,_ 
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B 

Solution 9: Slug test for a 
finite-diameter well in a nonleaky 

aquifer 

Assumptions: 
1. A volume of water, V, is injected into, or 

is discharged from, the well instan- 
taneously at t = 0. 

2. Well is of finite diameter and fully pen- 
etrates the aquifer. 

3. Aquifer is not leaky, and flow is in ra- 
dial direction only. 

Differential equation: 

PhlW + (l/r> ahtar = (SIT) ahtat, r>r, 

This differential equation describes 
nonsteady radial flow in a homogeneous iso- 
tropic aquifer beyond the radius of the injected 
well. 

Boundary and initial conditions: 

h(r,,,t)=H(t), t>O 
h(m,t)=O, t>O 

(1) 
(2) 

27Tr 
I, 

T dW,,.,t) & rrr:-’ aH(t) , t>o 
dr ( dt 

(3) 

h(r,O)=O, r>r, (4) 
H(0) = H, = V/w,2 (5) 

Equation 1 states that the head change in 
the aquifer at the face of the well is equal to 
that inside the well; one assumes that there is 
no exit loss at the well face. Equation 2 states 
that the head change approaches zero as dis- 
tance from the discharging well approaches in- 
finity, a condition which will be approximated 
if boundaries of the aquifer are sufficiently dis- 
tant from the discharging well. Equation 3 
states that near the well the radial flow is 
equal to the rate of change in volume of water 
inside the well. Equations 4 and 5 state that 
initially the head change is zero in the aquifer, 
and the head increase or decrease inside the 
well is equal to H,. 

Solution (Cooper and others, 1967): 

h = OH&r)&r (expc-pu 2/(u> { J,(urlr,,) 

1 

. [uY”(u)- 2aY,(u) ] -Y,(ur/r,,) 
* [uJ&)- 24, W]) /A(u)) du, (6) 

where a =rLSlr,2, 
p = Ttlr,‘, 

and A(u) = [uJ,,(~)-2cuJ,(u)]~ 

+ [UY&L)-22LyYJu)]? 

Jo and Y,, J, and Y ,, are zero-order and first- 
order Bessel functions of the first and second 
kind, respectively. 

The head, H, inside the well, obtained by 
substituting r =rw in equation (6) is 

HIHo = J’(P,a), 

where 

I 

x 
F&4 = (8a/+) (exp(-pu’lcu)luA(u)) du 

0 
and where (Y, p, A(u) are as defined previously. 
Comments: Figure 9.1 is a cross section show- 
ing geometric configuration along the well 
bore. The volume of water injected into or dis- 
charged from the well is rr,“H,. The water- 
level data in the injected well, expressed as a 
fraction of Ho, is plotted versus time on semi- 
logarithmic graph paper. This plot is superim- 
posed on figure 9.2, keeping the baselines the 
same and sliding horizontally until a match or 
interpolated fit is made. A match point for /3, t, 
and (Y is picked from the two graphs. 
Transmissivity is calculated from T =pr: It and 
storage coefficient from S = ar:-lr$ . As pointed 
out by Cooper, Bredehoeft, and Papadopulos 
(1967, p. 2671, the determination of S by this 
method has questionable reliability because of 
the similar shape of the curves, whereas the 
determination of T is not as sensitive to choos- 
ing the correct curve. Figure 9.2 on plate 1 is 
plotted from data in table 9.1, which contains 
original material from two sources (Cooper and 
others, 1967; and Papadopulos and others, 
1973). 

Table 9.2 is a listing of a FORTRAN program 
by S. S. Papadopulos that evaluates F(&a>. 
Input to the program consists of cards coded in 
a specific format (readers unfamiliar with 
FORTRAN formats should refer to a FOR- 
TRAN language manual). Input consists of two 
or more cards, each containing a single value of 
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FIGURE 9.1.-Cross section through a well in which a slug of water is suddenly injected. 

(Y coded in format F16.5. The first a! s 0 will 
signal program termination. Output from the 
program is shown in figure 9.3. 

Solution 10: Constant discharge 
from a fully penetrating well in an 
aquifer that is anisotropic in the 

horizontal plane 

Assumptions: 
1. Well discharges at a constant rate, Q. 
2. Well is of infinitesimal diameter and 

fully penetrates the aquifer. 
3. Aquifer is anisotropic in the horizontal 

plane. 
4. Aquifer is not leaky. 
5. The transmissivity of the aquifer, T, is 

a two-dimensional symmetric tensor. 

Differential equation: 

T,, awaX + 2T,,awaxay + T,,awaf 
+ Q 6(x)6 (y) = sadat. 

This differential equation describes 
nonsteady flow in a homogeneous anisotropic 
aquifer with a constantly discharging well at 
x =y =O. The Dirac delta function is represented 
as 6(z) and has the following properties: a(z)=0 
if z#O and1-t G(z)& =l. 

Boundary and initial conditions: 

s(x,.y ,O)=O 
s(+a1,y $)=O 
s(x, w,t)=O 

(1) 
(2) 
(3) 
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From Cooper, Bredehoeft, and Papadopulos, 1967 

Ttlr,’ a lo-’ 10-t 10-J lo-’ 10-s 

1.00 
10-Z 2.15 

4.64 
1.00 

10-Z 2.15 
4.64 
1.00 

10-l 2.15 
4.64 
1.00 

100 2.15 
4.64 
7.00 
1.00 
1.40 

10' 2.15 
3.00 
4.64 
7.00 
1.00 

lo2 2.15 

0.9771 
.9658 
.9490 
.9238 
.8860 
.8293 
.7460 
.6289 
.4782 
13117 
.1665 
.07415 
.04625 
.03065 
.02092 
.01297 
.009070 
.005711 
.003722 
.002577 
.001179 

0.9920 
.9876 
.9807 
.9693 
.9505 
.9187 
.8655 
.7782 
.6436 

:ZZ(: 
.1086 
.06204 
.03780 
.02414 
.01414 
.009615 
.004919 
.003809 
.002618 
.001187 

0.9969 
.9949 
.9914 
.9853 
.9744 
.9545 
.9183 
.8538 
.7436 
.5729 
.3543 
.1554 
.08519 
.04821 
.02844 
.01545 
.01016 
.006111 

:8XE% 
.001194 

0.9985 
.9974 

:Ei 
.9841 
.9701 
.9434 
.8935 
.8031 
.6520 
.4364 
.2082 
.1161 
.06355 
.03492 
.01723 
.01083 
.006319 
.003962 
.002688 
.001201 

0.9992 
.9985 
.9970 
.9942 
.9883 
.9781 
.9572 
.9167 
.8410 
.7080 
.5038 
.2620 
.1521 
.08378 
.04426 
.01999 
.01169 
.006554 
.004046 
.002725 
.001208 

From Papaclopulos, Bredehoeft, and Cooper, 1973 

Ttlr,* a 10-e 10-7 

; 
1o-3 4 

x 

:: 
1o-2 4 

ii 

; 
10-I 

; 
8 

f 

100 

3” 
10' 4 

i 
8 

lo2 t 

0.9994 0.9996 
.9989 .9992 
.9980 .9985 
.9972 .9978 
.9964 .9971 

.9919 .9934 

.9848 .9875 

.9782 .9819 

.9718 .9765 

.9655 .9712 

.9361 .9459 

.8828 .8995 

.8345 .8569 

.7901 .8173 

.7489 .7801 

.5800 .6235 
.5033 

.3613 .4093 

.2893 .3351 

.2337 .2759 

.1903 .2285 

.1562 

.1292 

.1078 

.02720 

.01286 

.008337 

.006209 

.004961 

.003547 

.002763 

.001313 

.1903 

::E 
.03343 
.01448 
.008898 
.006470 
.005111 
.003617 
.002803 
.001322 

10-f 

0.9996 
.9993 
.9987 
.9982 
.9976 
.9971 
.9944 
.9894 
.9846 
.9799 
.9753 
.9532 
.9122 
.8741 
.8383 
.8045 
.6591 
.5442 
.4517 
.3768 
.3157 
.2655 
.2243 
.1902 
.1620 
.04129 
.01667 
.009637 
.006789 

.003691 

.002845 

.001330 

10-e 

0.9997 
.9994 
.9989 
.9984 
.9980 
.9975 

:if%i 
.9866 
.9824 
.9784 
.9587 
.9220 
.8875 
.8550 
.8240 
.6889 
.5792 
.4891 
.4146 
.3525 
.3007 
.2573 .2888 
.2208 .2505 
.1900 .2178 
.05071 .06149 
.01956 .02320 
.01062 
.007192 
.005487 
.003773 
.002890 
.001339 

10-10 

0.9997 
.9995 
.9991 
.9986 
.9982 
.9978 
.9958 
.9919 
.9881 
.9844 
.9807 
.9631 
.9298 
.8984 
.8686 
3401 
.7139 
.6096 
.5222 
.4487 
.3865 
.3337 

.01190 

.007709 

.005735 

.003863 

.002938 

.001348 
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F~BETAIALPHA) FOR ALPHA= l.OOD-01 

RETA Ii/HO 

1 .OOD-03 0.9769 
2.000-03 0.9670 
4.000-03 0.9528 
6.000-03 0.9417 
8.000-03 0.9322 
l .OOD-02 0.9236 
2*00D-02 0.8904 
4.000-02 0.8421 
6.00D-02 O.RO48 
?.OOD-02 0.7734 
1.009-01 0.7459 
2.000-01 0.6418 
4.009-01 0.5095 
6.000-01 0.4227 
R . 0 0 !J - 0 1 0.3598 
1.000 00 0.3117 
2.000 00 0.17H6 
3.00!) 00 0.1196 
4.00Ll 00 0.0876 
5.OOD 00 0.06Rl 
6 . 0 0 0 0 0 0.0553 
7.001) 00 0.0453 
R.OOD 00 0.0396 
9.001) 00 0.0346 
l.OOcJ 01 0.030t 
2.0011 01 0.0141 
3.000 01 0.0091 
4.0013 01 0.0067 
5.OOlJ 01 0.0053 
4.00!: 01 0.0044 
7 . 0 0 0 n 1 t-l.0037 
5.ono 01 n.0032 
9.000 01 0.0029 
l.OOi) 02 O.OO?h 
2. ooi', 02 0.0013 
4.0011 n,? 0.0006 
6.000 02 0.0on4 
9.000 02 n.0003 
l.oocJ (13 0.0003 

FIGURE 9.3.-Example of output from program to compute 
change in water level due to sudden injection of a slug of 
water into a well. 

Equation 1 states that, initially, drawdown 
is zero. Equations 2 and 3 state that the draw- 
down approaches zero as distance from the dis- 
charging well approaches infinity, a condition 
which will be approximated if boundaries of 
the aquifer are sufficiently distant from the 
discharging well. 

Solution (Papadopulos, 1965, p. 23): 

s = (&14r%T,,-T,2,) W(u,, ), (4) 

where 

W(u) = 
I 

0% 
(e-“/u) du 

U 

and 
u,, = (S/4t)(T,,yZ + Tuarx’ 

- 2T,,xyMT,,T,, - T&h (5) 

If the coordinate axes x and y are the same as 
the principal axes E and n (fig. 10.1) of the 
transmissivity tensor, the preceding equation 
for drawdown becomes 

s = (Q/471.-) Wb,, ), 
where 

U-l = (S/4t)(T,, n2 + T,,,, E%!‘,, T,, . 

Comments: The method of type-curve solution 
as outlined by Papadopulos (1965, p. 26) re- 
quires observation of drawdown in at least 
three observation wells. First, choose a conve- 
nient rectangular coordinate system with the 
pumped well at the origin. Then, plot the ob- 
served drawdown versus t on logarithmic 
paper. Match these plots to the W(u) type curve 
given in solution 1. Choose a match point of 
(t,s) and (l&,, W(u,,)) for each well and com- 
pub T,,T, -T& = (QW(u,,>/477~)~ for each 
well. Match points for all observation wells 
should yield approximately the same value of 
(T,,T,,-T&,). Usually they will not and 
judgment must be used to obtain an “average” 
value. Substituting this value and the three 
values of (x,y) in equation 5 gives three equa- 
tions in three unknowns ST,,, ST,,, and ST,,. 
These equations are of the form 

y2(ST,) + x2(ST,J - 2xy(ST,,) 

= 4tu,,(T,,T,, - T& 1. 

Solve these three equations to determine T,,, 
TSII, and T,, in terms of S, and S may be de- 
termined from 
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FIGURE lO.l.-Plan vie1 WE showing coordinate axes. 

S = d (STnST,, - W’.,,)*MT,,Tyy - T.&,X 

Then, compute T,, TIY, and T,, from ST,,, 
ST,,, and ST,,. T, , T,, , and 8 (the angle 
between the x and the E axis) may be calculated 
from the relations (Papadopulos, 1965, p. 28) 

T,, = 1/2(T,, + T,,+ U’,, - T,,)* 
+ 4T3’*) 

T,, = 1/2V,, + T,, -(CT,, - T,,)* 
+ 4T,2,)‘/*> 

8 = arctan ((T,, - T,,VT,,). 

/ 
/ 

/ 

4 
/ 0 

/ 
/Pumped I 

\ 
well 

X 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

Solution 11: Variable discharge 
from a fully penetrating well in a 

leaky aquifer 
Assumptions: 

1. Well discharge changes as a specified 
function of time. 

2. Well is of infinitesimal diameter and 
fully penetrates the aquifer. 

3. Aquifer is overlain, or underlain, 
everywhere by a confining bed hav- 
ing uniform hydraulic conductivity 
(K’) and thickness (b’). 
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4. Confining bed is overlain, or underlain, 
by an infinite constanthead plane 
source. 

5. Hydraulic gradient across confining bed 
changes instantaneously with a 
change in head in the aquifer (no re- 
lease of water from storage in the 
confining bed). 

6. Flow in the aquifer is two-dimensional 
and radial in the horizontal plane 
and flow in the confining bed is verti- 
cal. This assumption will be approx- 
imated closely where the hydraulic 
conductivity of the aquifer is suffi- 
ciently greater than that of the con- 
fining bed. 

Differential equation: 

This is the differential equation describing 
nonsteady radial flow in a homogeneous iso- 
tropic aquifer with leakage proportional to 
drawdown. 

Boundary and initial conditions: 

s(r,O)=O 
s(m,t)=O 

(1) 
(2) 

lim r 22 = - -$$+ , t b 0 
r-0 ar 

(3) 

Equation 1 states that, initially, drawdown 
is zero. Equation 2 states that drawdown is 
zero at large distances from the pumped well. 
Equation 3 states that near the pumped well 
the radial flow is equal to the discharge of the 
pumped well, which is a function of time. 

Solution: 
Solutions for certain discharge functions 

have been published by Abu-Zied and Scott 
(1963), and Werner (1946) for a nonleaky 
aquifer, and by Hantush (1964a) for both leaky 
and nonleaky aquifers. For arbitrary discharge 
functions for leaky aquifers, a solution using 
the convolution integral has been presented by 
Moench (1971, eq. 3): 

t 
s = (1/477-T) (Q(t’)l(t-t’)) 

. exp (-‘Ai(t-t’) - (t-t’)K’/Sb’)dt’, (4) 

where Q(t) is the discharge function of time 
and A = rZS/4T. A numerical integration 
scheme is generally necessary to evaluate the 
above equation. 

For type curves, a more useful form of equa- 
tion 4 is 

s = (QJ4rT) 
J 

t [&WY&, (t-t’)] 

. exp [JAi(t-t’)-(t-t’)K’Isb’]dt’, (5) 

or 
s = (QJ4nT) SO(t), (6) 

where SO(t), read “system output function,” 
represents the integral expression in equation 
5, and Q1- is an arbitrary discharge that elimi- 
nates dimension from the integral expression. 
For example, Qr could be the initial, final, or 
average discharge, according to the needs of 
the user. 
Comments: Figure Il.1 is a cross section 
through the discharging well. This situation is 
the same as for solution 4, except for the vary- 
ing discharge of the well. The effect of finite 
well radius (r,,) was :investigated by Hantush 
(1964b, p. 4224), who concluded that for 
t>25rT,SIT and r,l\m < 0.1 the draw- 
down could be represented closely by the con- 
volution integral. 

Figure 11.2 on plate 1 shows a selected set of 
type curves for linear change in discharge in a 
nonleaky aquifer. The solution for this type of 
discharge function has been presented by 
Werner (1946, p. 706). The discharge function 
for figure 12.2 is Q(t>=Q,(l+ct), and the re- 
sulting drawdown is 

s = (&,/4~~)W(u){l+ct[u+l-e-“/W(u)]}, 

where W(U) is the well function of Theis. Sub- 
stituting Alu fort in the above expression gives 

s = (&,/4nT) W(u) 
.(l+cA (1+(1/u) [l-e-‘/W(u)]}>, 

or 

s = (Q,,l47~T) SO(t), 

where SO(t) represents 

W(u)(l+cA {l+Ulzd [1-e-VW(u)]}). 

c 
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Q (t) 

FIGURE ll.l.-Cross section thro; 

b 
This substitution permits the plotting of a 

family of type curves, each curve specified by a 
value of CA. 

Table 11.1 is the listing of a FORTRAN pro- 
gram designed to evaluate the above convolu- 
tion integral for five different discharge func- 
tions. Three of these discharge functions are 
those devised by Hantush (1964a, p. 343,344), 
who presented solutions for drawdown result- 
ing from these functions. These three discharge 
functions are: 

(a) Q(t)=Q,y [l-t6 exp (-t/t*)], 

(b) Q(t)=Q,~[1+6/(1+t/t*)], 

and (cl Q(t)=Q,[1+6/~l-ct/t*], 

where Qs is the ultimate steady discharge and 6 
and t* are parameters defining a particular 
function. The first discharge function, for an 
exponentially decreasing discharge (case “a” of 
Hantush, 1964a) is virtually the same as the 
discharge function of Abu-Zied and Scott 
(1963). Besides the three functions of Hantush, 

1 
the program also includes discharge as a fifth- 

h a well with variable discharge. 

degree polynomial of time, Q(t) = ztO ait', where 

the oi are the coefficients of the polynomial, 
and as a piecewise linear function of time with 
eight segments, 

Q(t)=a,+b,(t-t,-i) 

for 

et-1 <tCtj,j=l, 2, e . e 2 8, 

where a, and bj are parameters defining thejth 
line segment. The program uses a different, but 
equivalent to equation 4, expression for the 
convolution integral 

t 
s = (ll47rT) 

/ 
(Q(t-t’)lt’) 

0 
. exp (-A/t’-t’K’lSb’) dt’. 

The program uses a sum to approximate the 
convolution integral. It chooses a starting 
value of t ’ that satisfies rZS/4Tt’ +K’t’lSb’ = 
100. If such a value oft’ does not exist, that is, 
(rYj’I4T) (K’lSb’)>2500, then a value of zero is 
assigned for the integral value. The ending 
point of the interval is picked as 10 times the 
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starting point. The integral over this interval 
is approximated by a trapezoidal sum using 
500 subdivisions of the interval. A new inter- 
val is then constructed using the previous end 
point as a new starting point and a new ending 
point equal to 10 times the new starting point. 
This new interval is again evaluated by a 
trapezoidal sum of 500 segments. This summa- 
tion procedure over intervals that are succes- 
sively an order of magnitude larger continue: 
until either t’=t or (r’SI4Tt’) + (K’tlSb’I 
>lOl. Input to this program consists of cards 
coded in specific formats. Readers unfamiliar 
with FORTRAN formats should refer to a 
FORTRAN language manual. Input consists oj 
one or more groups of data, each group consist- 
ing of the following. First, one card containing 
the beginning time of the period of analysis in 
columns l-10, coded in format E10.3; the end. 
ing time coded in columns 1311-20, in formal 
E10.3; and a discharge index (a number from 1 
through 5) coded in column 25, in format 11 
and a reference discharge, QR, coded in col. 
umns 31-40, in format E10.3. The discharge 
index, ZQ, selects a discharge function, Q(t), ir 
the following manner. If ZQ = 1, the discharge 
function is exponentially decreasing, 

Q(t)=Qs [1+6exp(-t/t*)]. 

This is case (a) of Hantush (1964a, p. 343). If 
ZQ = 2, the discharge function is hyperbolically 
decreasing, 

This is case (b) of Hantush (1964a, p. 344). If 
ZQ = 3, the discharge function is the same as 
case (c> of Hantush (1964a, p. 344), 

Q(t)=&, [l +S/-1. 

If ZQ =4, the discharge function is a fifth- 
degree polynomial of time, 

5 
Q(t) = 2 qt’. 

i=O 

If ZQ = 5, the discharge function is a piecewise- 
linear function of time with eight or less seg- 
ments, 

for 
Q(t)=u,+b,(t-t,-,) 
tj-1 <tGtj,j=l,Z, . . . 78. 

The reference discharge, QR, is used to deter- 
mine the form of the output from the program: 
If QR is coded as zero (or blank), the output 
shows t, s (as defined by eq. 41, and Q(t). If a 
value greater than zero is coded for QR, the 
output shows l/u, SO(t) (as defined by eq. 6), 
and Q W/&R. 

Second, there are one or more cards contain- 
ing parameters of the discharge function. If 
ZQ = 1, 2, or 3, then it consists of one card con- 
taining: &ST, the ultimate steady discharge, 
coded in columns l-1.0, in format E10.3; DE- 
LTA, a rate parameter, coded in columns 
11-20, in format E10.3; TSTAR, a time param- 
eter, coded in column:s 21-30, in format E10.3. 
If ZQ =4, it is one card containing the six 
polynomial coefficients. They are coded in the 
ordera”,a,, . . . . a5, in columns l-10; 11-20, 
. . . ) 51-60 all in format E10.3. If ZQ =5, then 
the program requires four cards, each card con- 
taining t,, a,, b,, tJ+,: aj+l, b,+,; the four cards 
representing j = 1, 3, 5, 7. The last part of each 
set of data consists of two or more cards con- 
taining coded values for: distance from pumped 
well, in columns l-10; storage coefficient, in 
columns 11-20; transmissivity, in columns 
21-30; and ratio of hydraulic conductivity to 
thickness for the confining bed, in columns 
31-40, all in format E10.3. A blank card i.s 
used to signal the end of each set of data. Out- 
put from this program is shown in figure 11.3. 
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